8 research outputs found

    8-Azatetracyclines: Synthesis and Evaluation of a Novel Class of Tetracycline Antibacterial Agents

    Get PDF
    bS Supporting Information ABSTRACT: A novel series of fully synthetic 8-azatetracyclines was prepared and evaluated for antibacterial activity. Compounds were identified that overcome both efflux (tet(K)) and ribosomal protection (tet(M)) tetracycline resistance mechanisms and are active against Gram-positive and Gram-negative organisms. Two compounds were identified that exhibit comparable efficacy to marketed tetracyclines in in vivo models of bacterial infection. The tetracycline class of antibacterial agents has seen wide-spread clinical use for over 50 years due to its broad spectrum anti-bacterial activity.1 Tetracyclines inhibit bacterial growth by prevent-ing protein biosynthesis through binding to the 30S ribosome

    Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity

    No full text
    Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity

    Pharmacodynamics of Levofloxacin against Pseudomonas aeruginosa with Reduced Susceptibility Due to Different Efflux Pumps: Do Elevated MICs Always Predict Reduced In Vivo Efficacy?

    No full text
    The Pseudomonas aeruginosa efflux pumps MexAB-OprM, MexCD-OprJ, and MexEF-OprN play an important role in susceptibility to fluoroquinolones in vitro. To determine if levofloxacin MICs arising from different levels of expression of efflux pumps result in a proportional reduction in the response to levofloxacin in vivo, isogenic strains of P. aeruginosa were tested with levofloxacin in two mouse models of infection (sepsis and neutropenic mouse thigh models). The levofloxacin 50% effective doses (ED(50)s) increased proportionally with the MICs for most strains. Similarly, the 24-h area under the concentration-time curve (AUC)/MIC ratio that resulted in 90% of the maximum bactericidal activity (90% E(max)) exceeded 75 for all strains except those with elevated MICs due to MexEF-OprN overexpression. In these strains, levofloxacin ED(50)s were 2- to 10-fold lower than the ED(50)/MIC ratios in the other strains and 90% E(max) AUC/MIC ratios were 2- to 4-fold lower than those predicted from pharmacodynamic modeling of efficacy against other strains. These data show that while the MexEF-OprN efflux pump can provide P. aeruginosa resistance to levofloxacin in vitro, it appears to be less efficient in providing resistance to levofloxacin in animal models of infection

    8-Azatetracyclines: Synthesis and Evaluation of a Novel Class of Tetracycline Antibacterial Agents

    No full text
    A novel series of fully synthetic 8-azatetracyclines was prepared and evaluated for antibacterial activity. Compounds were identified that overcome both efflux (<i>tet</i>(K)) and ribosomal protection (<i>tet</i>(M)) tetracycline resistance mechanisms and are active against Gram-positive and Gram-negative organisms. Two compounds were identified that exhibit comparable efficacy to marketed tetracyclines in in vivo models of bacterial infection

    Pharmacokinetics in Animals and Humans of a First-in-Class Peptide Deformylase Inhibitor

    No full text
    BB-83698, a potent and selective inhibitor of peptide deformylase, was the first compound of this novel antibacterial class to progress to clinical trials. Single- and/or multiple-dose studies with doses ranging from 10 to 50 mg of BB-83698/kg of body weight were done with mice, rats, and dogs. Intravenous pharmacokinetics were characterized by low to moderate clearances and moderate volumes of distribution for all species. In dogs, but not in rodents, central nervous system (CNS) effects were dose limiting for intravenously administered BB-83698 and were suspected to be related to a high maximum concentration of the agent in plasma (C(max)) rather than to total systemic exposure. Controlled infusion studies with dogs demonstrated that CNS effects could be avoided without compromising systemic exposure by reducing the C(max). A randomized, double-blind, placebo-controlled, five-way-crossover, single-dose-escalation, phase I study to explore the safety, tolerability, and pharmacokinetics of intravenous BB-83698 at doses ranging from 10 to 475 mg was performed with healthy male volunteers. Systemic exposures were generally in linear relationships with administered doses in animals and humans. Pharmacokinetics were consistent, predictable, and exhibited good allometric scaling among all species (r(2) >0.98). Moreover, BB-83698 dosing in humans proceeded to a predicted efficacious exposure (the area under the concentration-time curve/MIC ratio, up to 184) without any clinically significant adverse effects
    corecore